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Multiple Scattering in Random Media  
II. The  General  2BA for the Uncorrelated System 

Eugene P. Gross 1 
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The paper is an application of a general microscopic approach to the theory of 
the average scattering matrix for a particle interacting with random scatterers. 
We present a detailed treatment for the case of uncorrelated positions of the 
scatterers. First, the general two-body additive approximation is used to truncate 
the hierarchy of correlation functions for fluctuations. It is shown that the 
self-energy is accurate through the fourth power of the individual scattering 
amplitude. Second, the hierarchy is terminated at the next stage. The self-energy 
is correct to the sixth power of the scattering amplitude. 
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1. INTRODUCTION 

We summarize the basic equations of the microscopic approach to multiple 
scattering. In the notation of I, (0 with 2 standing for the wave vector k 2, 
and with a matrix notation in wave vector space, the self-energy corre- 
sponding to the ensemble averaged T matrix is given by 

-1  
N(2) = U(2[(l  - K )  t]2) (1) 

The kernel is K = K 0 + K 1. K 0 is the quasicrystalline approximation part 

<11K0(2)13 ) = (11ta013)F2(2 - 3) (2) 

where ff2(2 - 3) is the Fourier transform of the static pair distributions, and 
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K1 is a kernel that takes account of the fluctuations. It is given by 

<1191(2)13 ) = <lltG012 - _X) A(X-I 0) ~ 6 E~ (X) <2 - x__lral3) 
N 

Here 

(3) 

EJ (X) = ~] Evt~(X ) = ~] exp[ iX(R~ - R v ) ] 

and the R B are the site positions. This is an ensemble average involving a 
microscopic fluctuation F~. The manipulation of the fluctuation equation 
to exhibit collective effects gave 

(11I'~(2)13 5 -- (118J=(2)13 > + 6 ~ ( l l 6Z~Fa[3  > (4) 
B:C-a 

The source term 6J~ and the matrix 6L~  are given in terms of 

( l l (g0La[3)  = N < l l t a o l 3 ) g . ~ ( 2  - 3)(1 - 6~,~ ) (5) 

The source term 6J~ is 

8j  _ 8K~ 1 Ko ~SKrO (6) 
- --N- + N 2 1 ~  v 

The first term is a direct term of order t with the functional form of the 
restricted 2BA. The second term is of order t 2 and is a collective term 
involving pairs of particles other than a. 

The kernel 6L~ is 

1 1 K~ 8KJ (7) 
8L,~B = ~ (8Ko),43 + N 2 1 -- -K o 

Again the direct term is of order t and the collective term is of order t 2. In 
the restricted 2BA we limited ourselves to an ansatz for I'~ of the same 
form, replacing the direct source term (lltG0]3 > by a quantity <l[H[3).  H 
was determined by using a hierarchy equation to treat nonlinear fluctua- 
tions. For the uncorrelated case and for a one-dimensional 8 function we 
found 

( I I H ] 3 )  = tGS(3), G8(3) = G0(3)/[  1 - NtGo(3)] 

We now want to improve on this result. To this end we first provide 
motivation for the general 2BA. Thus an expression for F~ accurate to 
order t 2 is 

1 6 ~ (SKo),~ ~ ~^(SKo)~ r~ = aJ~ + N-7 ~ v ~  

Let us examine the functional form of the second term. It has three distinct 
types of contributions. The first type comes from particle reduction ], = a. 
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It yields a generalized 2BA functional form. For example for the uncorre- 
lated system it is 

(lltG013 - X)(3 - xlta013 ) ~, E~(X) 
B~a 

The second type of contribution involves a ~ / 3  =/= 7 with a wave vector 
reduction. For the uncorrelated case it is N(1] tGo[3 ) (3 l tGo l3 )~r~ ,E , r  
X (2 - 3). This is of the restricted 2BA form, and is in fact the first term in 
the expansion of the form for (IIHI3).  The third type of functional 
dependence has an irreducible three-body additive form. 

The functional form of F~ is used to compute the kernel /T 1. In the 
uncorrelated system it is found that the 3BA terms give zero contribution. 
In fact the collective part of the source term also gives no contribution. 
Thus the functional form of the general 2BA is adequate to give/~ to t 3 
accuracy and with it a self-energy accurate to order t 4. The 3BA terms give 
a finite contribution for the case of general correlations. The general 2BA 
together with the collective source term give only part of the t 4 contribu- 
tions. In the present paper we work out the details of the general 2BA for 
the uncorrelated case. 

2. THE RESTRICTED 2BA SELF-ENERGY 

We first present some further details of the restricted 2BA for the 
uncorrelated case. The quantities encountered play a role in the general 
2BA. We pay particular attention to the one-dimensional &function case 
where (llt12_) --- t = r / L .  This case was extensively treated by Klauder. (2~ 
The kernel K 1 is then 

/~1(2; 3) = Z 2G~(3)a~ (8) 

where n = N / L  is the linear density. 
The self-energy is 

X =  n ~ l [ 1 -  K,(2;3)]  (9) 

where /( vo; ) 
r = v o 1 -  ~ E + i e -  X2/2  

We first write K 1 in a form to make a direct correspondence with Klauder's 
results. We have 

2 

K,(2; 3) = _~2zTrj(dXG~()X G o( = ~r f d X { G ~ ( X )  - Go(h)) (11) 

X = n 1 1 d h G ~ ( h )  (12) 
v o 2~r 
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This is a form intermediate between Klauder's fourth and fifth approxima- 
tions. 

In the present theory the results are expressed most simply in terms of 
the t matrix rather than the bare potential. We encounter the spatial form 
of the Green's function. Let 

do(X) = f e iX~Go(X ) d2t 

The explicit forms are 

G0()t I E ) = 1 
E + ie - 2t2/2 

Go(x [E ) = - [27r/(2]El) ' /2]exp[ -[x[(2lE[) l /2] ,  

= - [ 2 ~ r i / ( 2 E  )1/2 ] exp [ i lx[(2E ),/2 ], 

E<O 

(13) 

(14) 

nv o iv2o n 
E -  n r ( E )  = E + (17) 

1 + vo~/2E (2e)'/2(1 + Vo~/2E) 

This has a finite positive imaginary part for both signs of %. Thus we have 

_ 2eri e x p [ i l x l 2 ' / 2 ( E -  n',')'/21 (18) Go(x [E - nr) = [2(E --~nr)] ,t2 

exhibiting a damped oscillation in space. 
For E < 0 there are two cases. We work with E + ie with e small and 

positive. Then r (E )  is nearly real. To first order in 

E n 'c(E)  - I  E] nvo ienv2lE[ -3/e 
- = - + i r  + ( 1 9 )  

1 + Vo/(2lEI)  '/2 (1 + Vo/2~/ZlEl'/2) 2 

The imaginary part is always positive while the real part can be positive or 

so that 

E > 0  

The starred Green's functions are more complicated. We have 

G3(;k] E) = Go(X I E - n r ( E ) )  
(15) 

6~(x I E )  = do(X I E - n~(E)) 
We need to examine the quantity E - n r ( E )  in more detail. For E > 0 

[ i v ~  1 (16) 
r ( E )  = v 0 (2E-) '/2 (1 + v 2 / 2 E )  
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negative. As e ~ 0 we have  ( E  < 0, E - nr < 0), 

G o(x [ E-  m-) = - 2z" e x p [ - [ x [ ( 2 l E -  nr[) '/2] (20) 
21 /21E7  nrl'/2 

With the spatial fo rm of the Green ' s  funct ions the restricted 2BA gives 
a fo rmula  

g 1 ( 2 ; 3 )  - n'r2 f Go(x [ E - nr)Go(x I E)dx  (21) 
(2~) 2 

We  have  in the three regions 

( - i)n.r 2 
E > o, /q(2;  3)  = 

E < 0 ,  E - n r  

E < O, E - nr > 0 

( 2 E ) I / 2 ( E  - nr) t/z 

X El~2 + ( E -  nr) 1/2 

nr 2 1 
m 

(2[El)  1/2 I E -  n@/2 

1 
x [ [E[I/2+IE--m-I1/2 J 

(i)nr 

(21EI)' / i(E- nr)'/2 

X 1 
[ [Ell/2- i ( E -  nr)l/2 I 

(22) 

Finally, we examine  E - nz(E), contrast ing the behaviors  for  repulsive and  
at t ract ive v 0. For  E > 0 we use Eq. (17) for  E - nr(E). 

If  v 0 < 0 (at tractive potential)  the value at E = 0 is zero and  the slope 
of the real pa r t  is positive for all E. So the real pa r t  E - n ~ ( E )  is a 
mono ton ic  funct ion tending to E as E ~ m.  If v 0 > 0 (repulsive potential)  
there are two cases at  high densities when 2n > v 0 the slope at E = 0 is 
negative and  R e [ E -  n r (E ) ]  has a negative region, rising to zero at E = 
�89 Vo(2n - Vo). In  the low-density case 2n < v0 the funct ion is positive and  
monotonic .  

If E < 0 the value of E - n~(E) is always negat ive for the repulsive 
case, viz. 

E - n r  - I E I +  - - - - -  
(21E[) ' /2 - v0 
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For  E < 0 and  v o < 0 (at tractive potential)  we have 

[ njv~ ] (23) 
= - t e l -  

Thus  E - nr starts out at zero for E = 0, has a negative slope and tends to 
- m as one approaches  the bound  state [E I = v2/2. If IE[ is slightly larger 
than this, E -  nr tends to + ~ .  It  is then monoton ic  decreasing, passing 
through zero at 

(21el) , /2=�89 + , 2 4nlvoi)l/2 (24) (~v o + 

and tending to - [E I as [E I ~ ~ .  

. GENERAL 2BA--UNCORRELATED DELTA-FUNCTION 
POTENTIALS 

We first adapt Eq. (61)-(64) of I for (11U2(X)[3) to the uncorrelated 
case. Recall  that  

G(x) = E el (x)r  
B 

~3(Xl[X,)= 2 e,(-x-xl)e (x)eo(x,)ro (25) 

with the kernel Rj given as 

(11K,(2)13) = (1/N)flltGol2 - X_)2x(X_[ 0)(2  - X__] U2()k)[3) (26) 

We  write the equat ion for U 2 ( 2 -  3) separately.  In  the N o  m limit, the 
integral term, the collective par t  of the source term, and C 2 ( 2 -  3) all 
vanish. 

(11 U2(2 - 3)[3) - NLl[tGo[3)(31 U--if2 - 3)[3) 

= N2flltaol3) + ( l l t a0[2  - X_,) 

x (2 - 2,,I U3(3 - 211X,)) A(a_,IX)A(~_,I2 - 3) (27) 

One finds that  the U 3 term is zero for the restricted 2BA with or 
without  collective terms. The  general 2BA uses the microscopic  t runcat ion 

(11F~(2)[3) = ( l l H ( 3 ) [ 3 ) E ~  - 3) + ( I I H ( 2  - X_)I3)E~~ 12 - 3) 

(28) 

If one sets up the hierarchy equat ions for/-73, one sees that  the source term 
vanishes for the uncorrela ted system. So the exact U3 is at  most  of order  t 2, 
contr ibuting only terms of order  t 3 to U 2. 
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In  the equat ion for U2(X ), X ~ 2 - 3 we t r e a t  U2(2  - 3) as an inhomo-  
geneous term. In  the N ~ oo limit 

(11U2(~)137 - N(lltGo[2 - ~,5(2 - ),l U2(2913> 

- ( l l ta012 - A - a_~5(2 - 2, - a__ll U 2 ( ~ l ) 1 3 > A ( ~ 1 1 2  - 3 ) A ( _ ~ 1 1 0 )  

= (lltG013 - ~5(3 - ~'1U2( 2 - 3)135 

+ ( l l ta012 - a__~5(2 - a__~[ U3( -~ ,  II ~0135A(_a~ I~,) (29) 

Note  that  U2(2 - 3 ) ~ N  and  U2(X)~I  for )~ v ~ 2 - 3. 
We  now specialize to the case of the one-dimensional  delta function. 

Then  (11 U2(~,)135 is independent  of the wave vector  k 1 . I t  depends  pa rame t -  
rically on the wave vectors k 2 and  k 3. We introduce 

(11U2()~)135 = Z (~ ;  2; 3) (30) 

and  write Z(~)  for brevity. Passing to the con t inuum limit, with t = "r/L, 
n = N / L ,  we find for )~ =/= 2 - 3 

- nrGo(2- X ) } Z ( ~ ) -  ~ f _ + :  G 0 ( 2 -  ~ -  X,)Z(X,)dX {1 

Z ( 2  - 3) 
= nrG~ - X) N (31) 

In the N--> m limit we have 

Z ( 2  - 3)IN = nrG~(3) (32) 

This is unchanged  f rom the restricted 2BA. 
It is convenient  to define Y(X) by  

Z(X) = Y(a)nrZ(2 - 3 ) IN  (33) 

Then  

[ 1 -  nrGo(2- X)] Y()~ ) -  ~w f a o ( 2 -  x -  a,)Y(x,) dx, = Go(3- x) 

(34) 

The  kernel  K, is given as 

[71(2;3)=nr2G~(3)[Go(3)+__ff_ ~r f G o ( 2 _ X ) y ( X ) d X  ] (35) 

It  consists of the restricted 2BA plus a contr ibut ion f rom ~ =/: 0. 
Our  task is now to s tudy the integral equat ion for Y(),). In  the units 

that  we have used h = m = 1. Energies are inverse lengths squared, v o and  
with it the complex  r(E) are inverse lengths. The  quantit ies n/lr or n/Ivol 
are dimensionless.  There  are two obvious cases that  cor respond to n / v  o 
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large and small. For the high-density limit the first approximation to Y(X), 
holding as nr is finite with r ---) 0, is 

c0(3 - x) 
Y(X) = 1 - nrG0(2 - X) (36) 

We write AKI(2; 3) for the correction to the restricted 2BA. Then 

AKI(2; 3) ---) m'2 )ffcz(3)Gz(2- x)Co(3- x) d(3) (37) 

in terms of the spatial Green's functions 

A~'1(2; - n , r  3 3)~Tj f axdg(xlE- nr)Go(x lE)e  -ik2x (38) 

which, in contrast to the restricted 2BA, is dependent on k 2. 
The second simple limit is a low-density limit where nr ~ 0 with any 

value of r. We write 

Y()k) = ~ ; 6 0 ( 2  -- ~ -  )kl)Y(~kl) d)k 1 

2-Tq7 n'FG~(2- )k) ;Go(2-  )k-- )kl) Y()kl) d)k | 

G0(3 - X) 
= 1 - nrG0(2 - X) (39) 

and a related (adjoint) form for the quantity 

X(~.)  = Y(h . ) [  1 - n 'rGo(2 - X ) ]  (40)  

~ f G 0 ( 2  - x - ~ , l ) X ( X l ) d ~ .  1 x(x)- 

T 2~ , , f f G o ( 2  - X - X,)G~'(2 - ) k l ) X ( ~ . l ) d ~ .  1 -'- Go(3 - X )  (41) 

In both cases we have a convolution structure when the term proportional 
to nt is neglected. We then solve the equation 

W(AIX')-f-~ f Go(2-X-Xl)W(X,I~.I)dA,--8(X-X ') (42)  

The solution in terms of Fourier transforms is elementary. Introduce 

ff ' (x IX 1) -- f e  a~W(XlX 1) dX ~ 
(43) 

l fe-'?fZ(xlX')ax w ( x l x  t) = 

Since (~o(X I E) = G0(-  x[ E), we have 

eih~x )ei(2-XL)x 
ffZ(x ] )kl) = + (r/2~r)(~o(X I E (44) 

1 - [(r/2~r)do(X [ E ) ]  2 
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Using the adjoint form 

Y(~k) ~-" [ 1 --  /'/'I"60(2 -- ~k) ] - l f  W()k ] ) k 1)G00k 1 _ 3 ) d ) k  1 

we find 

(45) 

[e ~k,x + (~/2,~)60(x I E)] dx 
A-K1(2; 3) = ~n'r3 fgg(xle-.~)g0(x I E) 

1 - [(,/2,~)6o(x I F~ ) ]2 
(46) 

This reduces to the previous expression as r ~ 0 .  Of course, the exact 
solution involves the determination of a kernel S(~12t ~) in place of 
W()~IXl). It obeys 

(1 - nrGo(2 - )t)} S()t l) t  1) --  ~ fGo(2 - x - X l ) S ( ) k  . I)k 1 ) d)k 1 = (~(~k - ~k 1 ) 

(47) 

The preceding considerations do not handle the bound-state regions 
for moderate densities. It is likely that the preceding equation has an exact 
solution by analytic function techniques, but we have not found it. The 
problem may be approached analytically via stationary variational princi- 
ples, e.g., the Schwinger variation principle. 

Along with Y0 t) we consider the auxiliary function I00,  which obeys 

[1 - nrG0(2 - X)]I0t  ) - - ~  fa0(2 - x -  x , ) I (x , ) ax ,  = a0(2 - x) (4S) 

This is the same as the equation for Y, except for the inhomogeneous term. 
We construct the functional 

J = f Oo(2 - x) r(x)ax, f aX, Oo(3 - Xl)l(Xl)/ M (49) 

M = f a x ~ ( x ) [ 1  - . , a o ( 2  - x)] r(x) 

f,~ f f l(X)ao(2- x -  ) t l ) Y ( ) t ~ ) d X d ) t  ~ (50) 

J is stationary for approximations to I and Y in the vicinity of the exact 
values. The stationary value of J is fG0(2 - )t)Y0t) dX, i.e., just the quantity 
needed to compute f l (2 ;  3). The simplest trial functions are obtained by 
inserting 

Y()~) = G0(3 - ) t ) / [  1 - re'G0(2 - )~) ], I()t) = G~'(2 - )t) (51) 

to improve the weak scattering limit. Appropriate expressions from the 
Fourier transform solution may be used to extend the low-density case. 

The results of the present approach are most naturally compared with 
Klauder's early, pioneering paper. Klauder has compared the density of 
states corresponding to several levels of approximation with the exact 
results of Frisch and Lloyd. It is relatively easy to do this with self-energies 



614 Gross 

that are independent of k 2. Klauder's most sophisticated approximation 
takes into account strong f-matrix scattering, as well as medium effects, and 
leads to a momentum-dependent self-energy. In view of the complication, 
this approximation was not evaluated numerically and compared with the 
exact results. 

In general it is easier to compute with the present type of theory since 
we work with explicit expressions for the self-energy. There is no difficulty 
connected with the computation of self-consistent propagators. As noted 
earlier, the restricted 2BA is close to Klauder's fifth approximation with Y. 
approximated by nt at an appropriate point. The more interesting general 
2BA yields a N that is accurate to t 4 and is therefore momentum depen- 
dent. We have not carried out any numerical computations with it. Our 
confidence in this expression is based on the agreement to order t 4 and on 
the general logical structure of the theory. 

Thus far we have neglected the collective terms. It is easy to see that 
for the uncorrelated case they do not disturb the t 4 accuracy of the general 
2BA. The hierarchy equation for U20t), viz., Eq. (29), is exact for the 
uncorrelated system. The collective contribution to the source term is in 
general of order t 2 but vanishes for the uncorrelated system. An improved 
microscopic assumption for F,  involves a collective term that starts a s  t 2 

and so could only give contributions to if2 from B2 and C2 that are of order 
t 3. Thus there are no collective contributions to the t 4 self-energy. In fact, 
the argument goes further. The improved F~ that results from adding a 
collective term to the general 2BA (as was done for the restricted 2BA in I), 
gives zero contributions to U 2 from the B2 and if2 terms in the N -~ ce limit. 

The type of theory described here is expected to share one shortcoming 
of standard multiple scattering theories. It is not expected to describe the 
effects of very large fluctuations that result in deep traps. These have been 
treated by Lifshitz, (3~ Halperin and Lax, (4) Zittarz and Langer, (5~ and 
subsequently by many others. (6) They account for the tail in the density of 
states. They are of course contained in the exact Frisch-Lloyd (7) one- 
dimensional solutions. 

4. UNCORRELATED S Y S T E M p G E N E R A L  SCATTERING MATRIX 

We now briefly study the general 2BA for a general (llt13) and for a 
separable three-dimensional t matrix. For the uncorrelated system the 
truncation again implies that U 3 = 0 and that C 2 = 0. The equations for 
U2(X ) are Eqs. (27) and (29). 

The equation for X = 2 - 3 again decouples in the N + ao limit, and 
we have the same result as for the restricted 2BA: 

(11 02(2 - 3)[3> = N2(l[tGgl3) (52) 
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F o r  X 4 : 2  - 3 we solve (2  - ?q U2(X)[3 ) a n d  e l imina te  it. This  gives 

(11 02(X)13 ) - ( l l t o (2  - X)[2 - ~ - 2~)  

• G0(2 - A - _~ ) (2  - 2, - -~1U2( -~ ) [3 )  

= ( l l t o (2  - X)13 - ?~)G0(3 - X)N2(3  - X[tG~13) (53) 
where  

( l l t o (2  - ),)14) = ( l l t t 4 )  + N(lltG~I2 - X)(2 - x l t l4 )  (54) 

W e  are  in te res ted  in c o m p u t i n g  

( l l tG~  (31 U2(2 - 3)[3)  (11k~(2)[3) - N 

+ ( l l t a o ] 2  - 3,) (2  - -~l U2(_~)13) (55) 
N 

In  the  weak  sca t te r ing  l imit  we have  

(11K1(2)[3)  = g ( l l t G o l 3 ) ( 3 l t G Z [ 3 )  

+ g(l[tGJ[2 - ~ ) ( 2  - _~[tGo[3 - ~ ) ( 3  - _~[tG~'[3) (56) 

This  p rov ides  t 4 a c c u r a c y  for  the  self-energy.  
T h e  in tegral  equa t i on  for  (llU2(X)[3) is f o r m i d a b l e  fo r  the  genera l  

n o n s e p a r a b l e  ( l i t [ 2 ) .  I t  is, however ,  easy  to r educe  it to s imple  te rms for  a 
t h r ee -d imens iona l  separab le  sca t te r ing  po ten t ia l  

Le t  
( l i t ] 3 )  = - /u (1)u(3)  (57) 

f u2(~t)d~t = 1 

u(?~) is a f o r m  fac to r  a n d  ~, measu re s  the  s t rength  of  the potent ia l .  W e  can  
s impl i fy  the in tegral  equa t ion  wi th  the  ansa tz  

(1[ U2(?,)]3 ) -- ~,2N2G~(3)u(1)u(3)D(~) (58) 

D(X){  1 - NyNo(2 - ?t)} - y~o(2 - )t - X__)D(h_,) = 90(3 - )t) (59) 

~o(2~) = u2(X)Go(X) (60) 

This  is the  same fo rm  as was e n c o u n t e r e d  for  Y(?0 in the one -d imens iona l  
de l t a - func t ion  case. W e  have  

(11 ff2(2 - 3)[3)  = N27u(1)u(3)G~(3) (61) 

(11~,(2)13) -- Ny2G~(3)u(1)u(3){~o(3) + yu2(2  - ? ~ ) G o ( 2 -  ~ ) D ( ~ ) }  

(62) 

T h e n  

where  
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We can find explicit expressions for the weak scattering and low- 
density limits in the same way as in the previous section. 

5. HIGHER APPROXIMATIONS 

For  the uncorrelated case, we have seen that the general 2BA is 
equivalent to setting U3(-Xl lXl)  equal to zero. It is instructive to study 
improvements  by examining the second hierarchy equation. For  simplicity 
we work with the delta-function potential  and ignore collective effects. 
They  will not contr ibute to the hierarchy equations. 

For  the two-point  funct ion we found that U2(2 - 3) plays a special role 
since it has a direct source term. The  U2(X ) for X 4 = 2 - 3 is tG0(3 ) U2(2 - 3). 
We first find a more accurate expression for U 2 ( 2 -  3). The  exact first 
hierarchy equation is 

U2(2 - 3)[1 - NtGo(3) l  = NZtGo(3)+ tGo(2 - X!) 

U3(3 - 2 II X l)2X(X__, IX)A(X112 - 3) (63) 
m 

We therefore set down an equation for U3(3 - 2 It )kl)" In the N ~  m limit 

{1 - NtGo(2 - ~kl) } ff3(3 - 211 )tl) - tGo(X2 + Xl + 3 - 2 - 2)U3(3 - 2 hi -X2) 

= Ntao(2  - X,)U2(2 - 3) + tao(2 - X2)A(_X2 I X~) 

X V 4 ( 3  - 2[2 - 3 - ~l[~k I "1- ~---2 Ii ~k2) (64) 

where 

114 = ~]'E3,(3 - 2)Eft (2 - 3 - ~kl)Ee(X | -- ~k2)E6(~k2)F6 (65) 

with all of the particle indices distinct. 
In the approximat ion that we neglect 174, this is a self-contained 

equation. It may  be solved with a kernel: 

U3(3 - -  2 II Xl) = N t g ( h l  I X-2)Go(2 - X-a)U2(2 - 3) (66) 

where g (X 1 IX2) obeys. 

I 1 - NtGo(2 - Xl) ] ~(~kl [~k2) -- l ao (  ~k3 -t,- ~k I -{'- 3 -- 2 -- 2)g( X__ 3 l~k2) 

= 6(~k 11)k2) ( 6 7 )  

This is essentially the same as the integral equat ion of Section 3. Thus we 
have 

U2(2  - 3 ) [ 1  - N t a 0 ( 3 )  - Nt2 0(2 - I X )a0(2 - X_2)] =  V2tC0(3) 

(68) 
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The additional power of t in this result gives a t 4 contribution to/~1(2; 3) 
and thus a t 5 contribution to the self-energy. 

Equation (29) is the first hierarchy equation for U2(h ) when h ~ 2 - 3. 
Here U2(2 - 3) is a given homogeneous term. Thus we need an equation for 
i f 3 ( - h  1] Xl). After appropriate particle and wave vector reductions we find 

(I  - UtGo(2 - h,)} i f 3 ( - h  I1 hi) - t[ G0(2 - h~ + h - Xz)U3(-htl-X2) 

+ Go(2 - X - _X2) U3(h - ha II X_2)] 

= NtGo(2 - h,)[  U2(h ) + U2(h , - X)] 

+ tGo(3 - )~,)[ U3(3 - 2 l] h + 2 - 3) + 03(3 - 2 II Xl - X + 2 - 3)] 

+ tao(2 - _X2) V4(hl - hi - Xlhl - X_2 II X_2)zX(X_2 Ihx) (69) 

We have isolated the terms involving 03(3 - 211 x~), since they are N 
times U--3(-h d] ~1) for )t :/= 2 - 3. We can now make the truncation V4 = 0. 
This leads to a difficult but still tractable self-contained equation for the 
U 3 ( - h l ] h  0. However, an even cruder approximation still extends the 
accuracy well beyond the general 2BA. In lowest order, we neglect the 
integral terms on the left-hand side of the above equation. Then 

0 3 ( - X  II ha) ~ tG~(2 - hi) [ U2(h) --~ U2(hl - h)]  

tG0(3 - h i )  

+ 1 -~-7-~0-(2---hi ) [U3(3-211  h + 2 - 3 )  

+ U 3 ( 3 - 2 1 1 X ~ - X + 2 - 3 ) I  (70) 

This leads to a modified integral equation for U2(h ). 

U2(h) [ 1 - NtGo(2  - h)  - Nt2G~ ( 5 )  Go(5 )  ] 

- tG~(2 - h - X,)Uz(X~)Zx(~_ , 12 - 3) 

= tGo(3 - h)U2(2 - 3) + Nt2G~(2 - X__,) 

• Go(3 - _X0[$(A + 2 - 31 _X2) + $(X~ - X + 2 - 31 _X2)l 

• G0(2 - _X2) U2(2 - 3) (71) 

This modified equation for 02(h ) is no more difficult to solve than the 
general 2BA equation. The only extra complication is the extra homoge- 
neous term. 

We now estimate the error in the self-energy that  is involved in using 
Eq. (66) for U2(2 -  3) and Eq. (71) for ff2(h). The error in U3(-h l IX, )  
arising from using Eq. (70), i.e., neglecting the integral term, is of order t 4. 
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This contributes an error of order of t 5 in U2(X) and so an e r r o r  t 7 in the 
self-energy. The error in U2(2 - 3) may be obtained by noting that V 4 is of 
order tU3(3-  2 Ll~l)~t2U2(2- 3 ) ~ t  3. Thus ff3(3-  2 IIX0 is in error of 
order t 4, U2(2 - 3) in error of order t 5, K" 1 of order t 6 and the self-energy in 
error of order t 7. 

Thus far our result for the self-energy is accurate through terms of 
o r d e r  t 6. We still have to verify that the collective contributions to the 
source term J ,  and to the kernel L~B do not disturb this. We start by 
examining the errors in the three-point functions. We note that the collec- 
tive part of the source term vanishes for both U3(3- 2 II X0__ and U3(- 

[I X0- The contribution of the collective part of the kernel t o  U3(3 - 2 tl ~ )  
is 

1 (  1 N  I _ K -  ~ R~ t G ~  

• (2 - ~2] E3(2 - 3 - ?~113 - 21 )~)~-~,E2(?,2)L~,IT~, 13) (72) 
Og 

since the source term vanishes. This is of order t 4 since Ko, LaB, and I ' ,  are 
all of ~ t .  The same thing is true for f f3( -~ l l~0 .  In summary, the 
collective terms do not contribute to the self-energy through order t 6. For 
uncorrelated one-dimensional delta-function potentials the self-energy to 
o r d e r  t 6 is given by 

-1 
= - R , ( 2 ;  3 ) ]  

- t G0(2-  X)A(X[2-  3)U2(X) (73) K1(2; 3) = 1 tGo(3) ff2(2 _ 3) + ~ 

with U2(2 - 3) given by Eq. (67) and (68). U2()t) is given by Eq. (71). 
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